

Combined Hyper-spectral Sounder and Advanced Baseline Imager Temperature and Watervapor Retrieval's(PHSnABI) Impact on Numerical Weather Prediction

Qi Zhang¹, William Smith Sr. ^{1,2}

1. Center for Atmospheric Sciences, Hampton Unversity, Hampton, VA

2. Space Science and Engineering Center, University of Wisconsin-Madison, WI

Research Founded by:

- I Brief Introduction to PHSnABI Data and its impact in Numerical Weather Prediction System
- II How to optimize PHSnABI retrieval's performance in NWP system
- III Results from Operational Implication of PHSnABI
- IV Next Stage Plans of Cooprating with City of Hampton

Brief Introduction to PHSnABI Data and Retrieval Assimilation

What is PHSnABI and What is its Advantage

PHSnABI = Combined Polar Hyperspectral Sounding and Advanced Baseline Imager Temperature and Water Vapor Retrieval

The word "Polar" Can be deleted, because we have FY-4A

	Advantage	Disadvantage	
ABI retrieval	High Horizontal and temporal Resolution	Low Vertical Resolution	
PHS retrieval	High Vertical Resolution	Low Horizontal and temporal Resolution	Fusion

PHSnABI acquires very hight spatial and temporal resolution

Instrument	IASI	CrIS	GIIRS	ABI/AHI
Satellite	Metop-A, Metop-B	Suomi-NPP, JPSS-1	FY-4A	GOES-16,17 Himawari
Instrument Type	Michelson Interferometer	Michelson Interferometer	Michelson Interferometer	Multi-spectral Radiometer
Spectral Resolution	0.25 cm ⁻¹	0.625 cm ⁻¹	0.625 cm ⁻¹	34 – 2456 cm ⁻¹
Spectral Range	645 - 2760 cm ⁻¹ 15.5 – 3.62 μ m	650 – 2550 cm ⁻ 1 15.4 – 3.9 μ m	700 - 1130cm ⁻¹ 8.8 - 14.3 μ m 1650 - 2250 cm ⁻ 4.4 - 6.1 μ m	751– 21277 cm ⁻¹ 13.3– 0.47 μ m
Number of Channels	8462	2211	1650	16
Spatial Resolution	12 km	14 km	16 km	2 km
Launch Year	2006, 2012	2011, 2017	2016	2016/2014

With so many instruments flying in space, data coverage for PHSnABI over the globe is very promising!

Can this data improve the accuracy of Numerical Weather Prediction, especially severe weather storms?

Case1, Tornado Outbreak on 3rd Mar. 2019

Positive Impact on Tornado and Precipitation Forecast can be dectected after assimilating PHSnABI retrievals

Case2, Heavy Precipitation on 4th Mar. 2019

Case3, Tornado Outbreak on 3rd Jul. 2019

- PHSnABI temperature and water vapor retrievals do have positive impact on improving tornado outbreak and severe precipitation prediction
- The Performance of GEO-hyperspectral combined PHSnABI and LEOhyperspectral combined PHSnABI are identical
- GEO-hyperspectral combined PHSnABI's impact on NWP is more significant than LEO-hyperspectral combined PHSnABI

How to optimize PHSnABI retrieval's performance in NWP system

How do observations impact NWP results

Breif workflow of Regional NWP System

Penalty Function (Cost Function) used in PHSnABI Retrieval Assimilation

$$J_{(x)} = (x - x_b)B^{-1}(x - x_b)^T + (H_{(y)} - x)R^{-1}(H_{(y)} - x)^T$$

Calculated based on Model Forecast and Operational Analysis CAN BE TUNED

x: Best Estimation Field Calculated based X_h: Background Field from Operational Forecast on Radiosnode y: Observed Hyper-spectral Radiance and Reanalysis **B:** Background Error Covariance Matrix H₀: PHSnABI Retrieval Algrothim R: Observational Error Covariance Matrix **J**₀: Penalty Function

Ought to Be a State-of-art Retrieval and Fusion Algrothim

Dataset

FIXED

How Background Error Covariance works in Data Assimilation

How Many Components are there in Background Error Matrix

Ideally, B Matrix is Calclulated Like this:

B = Forecast - Truth Data Volume should be larger than 1 month!

But, The size of B Matrix is too big to use and it also contains noize. So, we need to simplify it to 5 parts:

$$B = F_{(B_{balance}, B_{unbalance}, B_{vertical}, B_{zonal}, B_{meridinal})}$$

Here, balance stands for geostrophic equilibrium

p.s., in an Operational Application, $B_{vertical}$, B_{zonal} , $B_{meridinal}$ are smpilified to a Gaussian Distribution Function: The nearer an observation is to model grid point, the more significantly it's going to influence the Data Assimiliation result.

B_{unbalance} Plays a more important part in Convectivescale system prediction

In GSI's default settings, unbalanced temperature and unbalanced water vapor part in B are given the same weighting of 0.75.

This will be the parameter which we can play with!

Accumulated Precipitation from Mar 3rd 0400UTC to Mar 3rd 0800UTC

Does PHSnABI make anything better compared to Control Run?

- PHSnABI temperature retrieval has positive impact to precipitation forecast in NWP system, but the impact can be neglected as the difference is too small compared to No temperature assimilation
- In GSI, temperature's impact to initial condition is over-estimated and it hinders water vapor observational information getting into the initial condition.

How about the Tornado Prediction Skill?

By assimilating PHSnABI Water Vapor Profiles, precipitation structure is more organized.

StagelV

40°

Results from Operational Implication of PHSnABI

Operational NWP Systems running at CAS/SWRC

8km with 12hrs-leadtime focusing on Central and Eastern US

http://cas.hamptonu.edu/~qi.zhang/Hurricane_8km

8km with 72hrs-leadtime focusing on Eastern Coast Hurricane Landfall

http://cas.hamptonu.edu/~qi.zhang/home/mainpage.html

3km with 12hrs-leadtime focusing on the State of Virginia

http://cas.hamptonu.edu/~qi.zhang/HWT3km/Mainpage.html

Here're some Cases

Hurricane Laura's Landfall

Squall line on Aug. 28th

Hurricane Laura's Landfall

949

30hrs Forecast Valid at 06:00UTC From GOES-16 Channel 13 observation on 06:01UTC, Laura is hitting Cameron

Minimum Central Pressure: 941hP Maximum Sustain Wind: 62.5m/s

With Landfal Location Error Less than 17km²and Central Pressure Error between 8hPa and 18hPa, System is Prett

22 /c 218 205 Vind Spe

185

18hrs Forecast

955

12hrs Forecast Valid at 06:00UTC Valid at 06:00 UTC 980

Cameron City's distance to TX-LA Border is approx. 32km

Squall line at 0200UTC Aug. 28th

20°

120°W

115°W

110°W

105°W

100°W

95°W

90°W

85°W

80°W

75

65°W

70°W

0.0

20°N 120°W 115°W 110°W 105°W 100°W 95°W 90°W 85°W 80°W 75°W 70°W 65°W

Next Stage Plans of Cooperating with the City of Hampton

Devasitating Weather-related Disasters Since 1950

Thunderstorm	Hail	Flooding	Winter Storm	Strong Wind	Heavy Snow	Tropical Cyc	lone	Ice Str	om	Dense Fog	Wildfire
2064	896	335	126	124	48	31		21		2	2
Forecast Product	roducts Parameters Needed		Einished	Status Finished Fasy Moderate Hard			ard	- Comments			
Tropical Cyclone		1ean Sea level P Om AGL Wind S recipitation	ressure peed	√							
Winter Strom and He	eavy Lo iLo iLo iLo iLo	ow Level Air Ter ow Level WInd S recipitation	nperature Speed	√		 - - - - - - - - - - -	!			Add some Plo	ots
Flooding	ιΤα ΓΡι ΓΙ ΓΙ ΓΙ	errain recipitation Om AGL Wind	Reso Capal	urce is N ble to do	lot Enou this	gh and N	ot	V	Rive	r Model and Oc Model Need	ean Wave ed
Thunderstrom and H	Hail C	loud Microphys	ics	 	v			 	Li	ghtening Index I	Needed
Ice Storm	IPI IPI I I I I I I I I I I I I I I I I	recipitation urface SKin Tem	nperature			V	 		Quai	ntify Highway In	terchange
	L ¦R	oad Type		1 			 	1			

Thanks for listening! Any Questions?